Making sense of data了解数据:探索数据分析与数据挖掘实用指南 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
Making sense of data了解数据:探索数据分析与数据挖掘实用指南电子书下载地址
- 文件名
- [epub 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 epub格式电子书
- [azw3 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 azw3格式电子书
- [pdf 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 pdf格式电子书
- [txt 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 txt格式电子书
- [mobi 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 mobi格式电子书
- [word 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 word格式电子书
- [kindle 下载] Making sense of data了解数据:探索数据分析与数据挖掘实用指南 kindle格式电子书
内容简介:
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
书籍目录:
Preface
1 Introduction
1.1 Overview
1.2 Problem definition
1.3 Data preparation
1.4 Implementation of the analysis
1.5 Deployment of the results
1.6 Book outline
1.7 Summary
1.8 Further reading
2 Definition
2.1 Overview
2.2 Objectives
2.3 Deliverables
2.4 Roles and responsibilities
2.5 Project plan
2.6 Case study
2.6.1 Overview
2.6.2 Problem
2.6.3 Deliverables
2.6.4 Roles and responsibilities
2.6.5 Current situation
2.6.6 Timetable and budget
2.6.7 Cost/benefit analysis
2.7 Summary
2.8 Further reading
3 Preparation
3.1 Overview
3.2 Data sources
3.3 Data understanding
3.3.1 Data tables
3.3.2 Continuous and discrete variables
3.3.3 Scales of measurement
3.3.4 Roles in analysis
3.3.5 Frequency distribution
3.4 Data preparation
3.4.1 Overview
3.4.2 Cleaning the data
3.4.3 Removing variables
3.4.4 Data transformations
3.4.5 Segmentation
3.5 Summary
3.6 Exercises
3.7 Further reading
4 Tables and graphs
4.1 Introduction
4.2 Tables
4.2.1 Data tables
4.2.2 Contingency tables
4.2.3 Summary tables
4.3 Graphs
4.3.1 Overview
4.3.2 Frequency polygrams and histograms
4.3.3 Scatterplots
4.3.4 Box plots
4.3.5 Multiple graphs
4.4 Summary
4.5 Exercises
4.6 Further reading
5 Statistics
5.1 Overview
5.2 Descriptive statistics
5.2.1 Overview
5.2.2 Central tendency
5.2.3 Variation
5.2.4 Shape
5.2.5 Example
5.3 Inferential statistics
5.3.1 Overview
5.3.2 Confidence intervals
5.3.3 Hypothesis tests
5.3.4 Chi-square
5.3.5 One-way analysis of variance
5.4 Comparative statistics
5.4.1 Overview
5.4.2 Visualizing relationships
5.4.3 Correlation coefficient (r)
5.4.4 Correlation analysis for more than two variables
5.5 Summary
5.6 Exercises
5.7 Further reading
6 Grouping
6.1 Introduction
6.1.1 Overview
6.1.2 Grouping by values or ranges
6.1.3 Similarity measures
6.1.4 Grouping approaches
6.2 Clustering
6.2.1 Overview
6.2.2 Hierarchical agglomerative clustering
6.2.3 K-means clustering
6.3 Associative rules
6.3.1 Overview
6.3.2 Grouping by value combinations
6.3.3 Extracting rules from groups
6.3.4 Example
6.4 Decision trees
6.4.1 Overview
6.4.2 Tree generation
6.4.3 Splitting criteria
6.4.4 Example
6.5 Summary
6.6 Exercises
6.7 Further reading
7 Prediction
7.1 Introduction
7.1.1 Overview
7.1.2 Classification
7.1.3 Regression
7.1.4 Building a prediction model
7.1.5 Applying a prediction model
7.2 Simple regression models
7.2.1 Overview
7.2.2 Simple linear regression
7.2.3 Simple nonlinear regression
7.3 K-nearest neighbors
7.3.1 Overview
7.3.2 Learning
7.3.3 Prediction
7.4 Classification and regression trees
7.4.1 Overview
7.4.2 Predicting using decision trees
7.4.3 Example
7.5 Neural networks
7.5.1 Overview
7.5.2 Neural network layers
7.5.3 Node calculations
7.5.4 Neural network predictions
7.5.5 Learning process
7.5.6 Backpropagation
7.5.7 Using neural networks
7.5.8 Example
7.6 Other methods
7.7 Summary
7.8 Exercises
7.9 Further reading
8 Deployment
8.1 Overview
8.2 Deliverables
8.3 Activities
8.4 Deployment scenarios
8.5 Summary
8.6 Further reading
9 Conclusions
9.1 Summary of process
9.2 Example
9.2.1 Problem overview
9.2.2 Problem definition
9.2.3 Data preparation
9.2.4 Implementation of the analysis
9.2.5 Deployment of the results
9.3 Advanced data mining
9.3.1 Overview
9.3.2 Text data mining
9.3.3 Time series data mining
9.3.4 Sequence data mining
9.4 Further reading
Appendix A Statistical tables
A.1 Normal distribution
A.2 Student’s t-distribution
A.3 Chi-square distribution
A.4 F-distribution
Appendix B Answers to exercises
Glossary
Bibliography
Index
作者介绍:
GLENN J. MYATT, PhD, is cofounder of Leadscope, Inc., a data mining company providing solutions to the pharmaceutical and chemical industry. He has also acted as a part-time lecturer in chemoinformatics at The Ohio State University and has held a series o
出版社信息:
暂无出版社相关信息,正在全力查找中!
书籍摘录:
暂无相关书籍摘录,正在全力查找中!
在线阅读/听书/购买/PDF下载地址:
原文赏析:
暂无原文赏析,正在全力查找中!
其它内容:
书籍介绍
A practical, step-by-step approach to making sense out of data
Making Sense of Data educates readers on the steps and issues that need to be considered in order to successfully complete a data analysis or data mining project. The author provides clear explanations that guide the reader to make timely and accurate decisions from data in almost every field of study. A step-by-step approach aids professionals in carefully analyzing data and implementing results, leading to the development of smarter business decisions. With a comprehensive collection of methods from both data analysis and data mining disciplines, this book successfully describes the issues that need to be considered, the steps that need to be taken, and appropriately treats technical topics to accomplish effective decision making from data.
Readers are given a solid foundation in the procedures associated with complex data analysis or data mining projects and are provided with concrete discussions of the most universal tasks and technical solutions related to the analysis of data, including:
* Problem definitions
* Data preparation
* Data visualization
* Data mining
* Statistics
* Grouping methods
* Predictive modeling
* Deployment issues and applications
Throughout the book, the author examines why these multiple approaches are needed and how these methods will solve different problems. Processes, along with methods, are carefully and meticulously outlined for use in any data analysis or data mining project.
From summarizing and interpreting data, to identifying non-trivial facts, patterns, and relationships in the data, to making predictions from the data, Making Sense of Data addresses the many issues that need to be considered as well as the steps that need to be taken to master data analysis and mining.
网站评分
书籍多样性:3分
书籍信息完全性:5分
网站更新速度:5分
使用便利性:4分
书籍清晰度:5分
书籍格式兼容性:9分
是否包含广告:8分
加载速度:7分
安全性:4分
稳定性:8分
搜索功能:5分
下载便捷性:5分
下载点评
- 不亏(609+)
- 情节曲折(484+)
- 全格式(78+)
- 还行吧(265+)
- 字体合适(552+)
- 内涵好书(83+)
- azw3(540+)
下载评价
- 网友 养***秋: ( 2025-01-03 16:54:55 )
我是新来的考古学家
- 网友 瞿***香: ( 2024-12-29 03:27:23 )
非常好就是加载有点儿慢。
- 网友 寿***芳: ( 2024-12-27 23:37:17 )
可以在线转化哦
- 网友 蓬***之: ( 2025-01-08 19:11:06 )
好棒good
- 网友 孔***旋: ( 2025-01-03 10:09:24 )
很好。顶一个希望越来越好,一直支持。
- 网友 康***溪: ( 2025-01-05 23:29:03 )
强烈推荐!!!
- 网友 薛***玉: ( 2025-01-04 18:15:42 )
就是我想要的!!!
- 网友 谭***然: ( 2025-01-11 05:49:17 )
如果不要钱就好了
- 网友 芮***枫: ( 2024-12-26 02:01:54 )
有点意思的网站,赞一个真心好好好 哈哈
- 网友 冯***丽: ( 2025-01-09 18:30:26 )
卡的不行啊
- 网友 曹***雯: ( 2025-01-04 20:36:22 )
为什么许多书都找不到?
喜欢"Making sense of data了解数据:探索数据分析与数据挖掘实用指南"的人也看了
- 一生 (法)莫泊桑 著 盛澄华 译 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- DSP应用系统开发实例 化学工业出版社 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 备考2019 国家执业药师考试用书2018中药教材 十日特训1200题 中药学综合知识与技能(第三版) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 建设工程计量与计价实务(安装工程) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 胸外科学进展 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 全5册狼道+鬼谷子+墨菲定律+羊皮卷+人性的弱点受益一生的五本书励志成功书籍 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 物理:配人教版/一轮用书——2012安徽高中总复习高考密码(附检测卷及答案解析) 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 星星小镇微童话1—三只猫去郊游 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 游泳长距离项目专项训练生理生化监控方法研究 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
- 建筑施工技术(第2版) 中国建筑工业出版社 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线
书籍真实打分
故事情节:4分
人物塑造:5分
主题深度:6分
文字风格:9分
语言运用:9分
文笔流畅:4分
思想传递:7分
知识深度:5分
知识广度:8分
实用性:9分
章节划分:3分
结构布局:6分
新颖与独特:4分
情感共鸣:9分
引人入胜:6分
现实相关:6分
沉浸感:7分
事实准确性:4分
文化贡献:8分