墨海书舟 -Python机器学习(影印版) 东南大学出版社
本书资料更新时间:2025-01-20 19:31:16

Python机器学习(影印版) 东南大学出版社 下载 pdf 百度网盘 epub 免费 2025 电子书 mobi 在线

Python机器学习(影印版) 东南大学出版社精美图片
》Python机器学习(影印版) 东南大学出版社电子书籍版权问题 请点击这里查看《

Python机器学习(影印版) 东南大学出版社书籍详细信息

  • ISBN:9787564170776
  • 作者:暂无作者
  • 出版社:暂无出版社
  • 出版时间:2017-04
  • 页数:425
  • 价格:59.10
  • 纸张:胶版纸
  • 装帧:平装-胶订
  • 开本:16开
  • 语言:未知
  • 丛书:暂无丛书
  • TAG:暂无
  • 豆瓣评分:暂无豆瓣评分
  • 豆瓣短评:点击查看
  • 豆瓣讨论:点击查看
  • 豆瓣目录:点击查看
  • 读书笔记:点击查看
  • 原文摘录:点击查看
  • 更新时间:2025-01-20 19:31:16

寄语:

【文轩正版图书】


内容简介:

本书将带你进入预测分析的世界,通过演示告诉你为什么Python是世界很好的数据科学语言之一。如果你想询问更深入的数据问题,或是想增进、拓展机器学习系统的能力,这本实用的书籍可谓是无价之宝。书中涵盖了包括 scikit-learn、Theano和Keras在内的大量功能强大的Python库,操作指南以及从情感分析到神经网络的各色小技巧,很快你就能够解答你个人及组织所面对的那些最重要的问题。


书籍目录:

Preface

Chapter 1: Givin Computers the Ability to Learn from Data

Building intelligent machines to transform data into knowledge

The three different types of machine learning

Making predictions about the future with supervised learning

Classification for predicting class labels

Regression for predicting continuous outcomes

Solving interactive problems with reinforcement learning

Discovering hidden structures with unsupervised learning

Finding subgroups with clustering

Dimensionality reduction for data compression

An introduction to the basic terminology and notations

A roadmap for building machine learning systems

Preprocessing-getting data into shape

Training and selecting a predictive model

Evaluating models and predicting unseen data instances

Using Python for machine learning

Installing Python packages

Summary

Chapter 2: Training Machine Learning Algorithms

for Classification

Artificial neurons-a brief glimpse into the early history

of machine learning

Implementing a perceptron learning algorithm in Python

Training a perceptron model on the Iris dataset

Adaptive linear neurons and the convergence of learning

Minimizing cost functions with gradient descent

Implementing an Adaptive Linear Neuron in Python

Large scale machine learning and stochastic gradient descent

Summary

Chapter 3: A Tour of Machine Learning Classifiers Using

Scikit-learn

Choosing a classification algorithm

First steps with scikit-learn

Training a perceptron via scikit-learn

Modeling class probabilities via logistic regression

Logistic regression intuition and conditional probabilities

Learning the weights of the logistic cost function

Training a logistic regression model with scikit-learn

Tackling overfitting via regularization

Maximum margin classification with support vector machines

Maximum margin intuition

Dealing with the nonlinearly separablecase using slack variables

Alternative implementations in scikit-learn

Solving nonlinear problems using a kernel SMM

Using the kernel trick to find separating hyperplanes in higher

dimensional space

Decision tree learning

Maximizing information gain-getting the most bang for the buck

Building a decision tree

Combining weak to strong learners via random forests

K-nearest neighbors-a lazy learning algorithm

Summary

Chapter 4: Building Good Training Sets-Data Preprocessing

Dealing with missing data

Eliminating samples or features with missing values

Imputing missing values

Understanding the scikit-learn estimator API

Handling categorical data

Mapping ordinal features

Encoding class labels

Performing one-hot encoding on nominal features

Partitioning a dataset in training and test sets

Bringing features onto the same scale

Selecting meaningful features

Sparse solutions with L1 regularization

Sequential feature selection algorithms

Assessing feature importance with random forests

Summary

Chapter 5: Com~ Data via Di~ Reduction

Unsupervised dimensionality reduction via principal

component analysis

Total and explained variance

Feature transformation

Principal component analysis in scikit-learn

Supervised data compression via linear discriminant analysis

Computing the scatter matrices

Selecting linear discriminants for the new feature subspace

Projecting samples onto the new feature space

LDA via scikit-learn

Using kernel principal component analysis for nonlinear mappings

Kernel functions and the kernel trick

Implementing a kernel principal component analysis in Python

Example 1-separating half-moon shapes

Example 2-separating concentric circles

Projecting new data points

Kernel principal component analysis in scikit-learn

Summary

Chapter 6: Learning Best Practices for Model Evaluation

and Hyperparameter Tuni~

Streamlining workflows with pipelines

Loading the Breast Cancer Wisconsin dataset

Combining transformers and estimators in a pipeline

Using k-fold cross-validation to assess model performance

The holdout method

K-fold cross-validation

Debugging algorithms with learning and validation curves

Diagnosing bias and variance problems with learning curves

Addressing overfitting and underfitting with validation curves

Fine-tuning machine learning models via grid search

Tuning hyperparameters via grid search

Algorithm selection with nested cross-validation

Looking at different performance evaluation metrics

Reading a confusion matrix

Optimizing the precision and recall of a classification model

Plotting a receiver operating characteristic

The scoring metrics for multiclass classification

Summary

Chapter 7: Combining Different Models for Ensemble Learning

Learning with ensembles

Implementing a simple majority vote classifier

Combining different algorithms for classification with majority vote

Evaluating and tuning the ensemble classifier

Bagging-building an ensemble of classifiers from

bootstrap samples

Leveraging weak learners via adaptive boosting

Summary

Chapter 8: Applying Machine Learning to Sentiment Analysis

Obtaining the IMDb movie review dataset

Introducing the bag-of-words model

Transforming words into feature vectors

Assessing word relevancy via term frequency-inverse

document frequency

Cleaning text data

Processing documents into tokens

Training a logistic regression model for document classification

Working with bigger data-online algorithms and

out-of-core learning

Summary

Chapter 9: Embedding a Machine Learning Model into

a Web Application

Serializing fitted scikit-learn estimators

Setting up a SQLite database for data storage

Developing a web application with Flask

Our first Flask web application

Form validation and rendering

Turning the movie classifier into a web application

Deploying the web application to a public sewer

Updating the movie review classifier

Summary

Chapter 10: Predicting Continuous Target Variables

with R_Re_gression Analysis

Introducing a simple linear regression model

Exploring the Housing Dataset

Visualizing the important characteristics of a dataset

Implementing an ordinary least squares linear regression model

Solving regression for regression parameters with gradient descent

Estimating the coefficient of a regression model via scikit-learn

Fitting a robust regression model using RANSAC

Evaluating the performance of linear regression models

Using regularized methods for regression

Turning a linear regression model into a curve-polynomial regression

Modeling nonlinear relationships in the Housing Dataset

Dealing with nonlinear relationships using random forests

Decision tree regression

Random forest regression

Summary

Chapter 11: Working with Unlabeled Data- Cluste~

Grouping objects by similarity using k-means

K-means++

Hard versus soft clustering

Using the elbow method to find the optimal number of clusters

Quantifying the quality of clustering via silhouette plots

Organizing clusters as a hierarchical tree

Performing hierarchical clustering on a distance matrix

Attaching dendrograms to a heat map

Applying agglomerative clustering via scikit-learn

Locating regions of high density via DBSCAN

Summary

Chapter 12: Training Artificial Neural Networks for Image Recognition

Modeling complex functions with artificial neural networks

Single-layer neural network recap

Introducing the multi-layer neural network architecture

Activating a neural network via forward propagation

Classifying handwritten digits

Obtaining the MNIST dataset

Implementing a multi-layer perceptron

Training an artificial neural network

Computing the logistic cost function

Training neural networks via backpropagation

Developing your intuition for backpropagation

Debugging neural networks with gradient checking

Convergence in neural networks

Other neural network architectures

Convolutional Neural Networks

Recurrent Neural Networks

A few last words about neural network implementation

Summary

Chapter 13: Parallelizing Neural Network Training with Theano

Building, compiling, and running expressions with Theano

What is Theano?

First steps with Theano

Configuring Theano

Working with array structures

Wrapping things up-a linear regression example

Choosing activation functions for feedforward neural networks

Logistic function recap

Estimating probabilities in multi-class classification via the

softmax function

Broadening the output spectrum by using a hyperbolic tangent

Training neural networks efficiently using Keras

Summary

Index


作者介绍:

Sebastian Raschka is a PhD student at Michigan State University, who develops new computational methods in the field of computational biology. He has been ranked as the number one most influential data scientist on GitHub by Analytics Vidhya. He has a yearlong experience in Python programming and he has conducted several seminars on the practical applications of data science and machine learning. Talking and writing about data science, machine learning, and Python really motivated Sebastian to write this book in order to help people develop data-driven solutions without necessarily needing to have a machine learning background.

He has also actively contributed to open source projects and methods that he implemented, which are now successfully used in machine learning competitions, such as Kaggle. In his free time, he works on models for sports predictions, and if he is not in front of the computer, he enjoys playing sports.


出版社信息:

暂无出版社相关信息,正在全力查找中!


书籍摘录:

暂无相关书籍摘录,正在全力查找中!



原文赏析:

暂无原文赏析,正在全力查找中!


其它内容:

书籍介绍

机器学习和预测分析正在改变商业和其他组织的运作模式。

由塞巴斯蒂安·拉什卡著的《Python机器学习(影印版)(英文版)》将带你进入预测分析的世界,通过演示告诉你为什么Python是世界顶尖的数据科学语言之一。如果你想询问更深入的数据问题,或是想增进、拓展机器学习系统的能力,这本实用的书籍可谓是无价之宝。书中涵盖了包括scikit-learn、

Theano和Keras在内的大量功能强大的Python库、操作指南以及从情感分析到神经网络的各色小技巧,很快你就能够解答你个人及组织所面对的那些最重要的问题。


书籍真实打分

  • 故事情节:5分

  • 人物塑造:9分

  • 主题深度:7分

  • 文字风格:3分

  • 语言运用:5分

  • 文笔流畅:9分

  • 思想传递:7分

  • 知识深度:7分

  • 知识广度:8分

  • 实用性:9分

  • 章节划分:4分

  • 结构布局:9分

  • 新颖与独特:6分

  • 情感共鸣:3分

  • 引人入胜:5分

  • 现实相关:5分

  • 沉浸感:8分

  • 事实准确性:4分

  • 文化贡献:9分


网站评分

  • 书籍多样性:9分

  • 书籍信息完全性:4分

  • 网站更新速度:8分

  • 使用便利性:5分

  • 书籍清晰度:7分

  • 书籍格式兼容性:9分

  • 是否包含广告:5分

  • 加载速度:5分

  • 安全性:9分

  • 稳定性:9分

  • 搜索功能:3分

  • 下载便捷性:7分


下载点评

  • 值得购买(193+)
  • 全格式(647+)
  • 强烈推荐(342+)
  • 方便(446+)
  • 好评多(131+)
  • 下载快(605+)
  • 情节曲折(425+)
  • 速度慢(517+)

下载评价

  • 网友 扈***洁: ( 2025-01-15 18:58:00 )

    还不错啊,挺好

  • 网友 寿***芳: ( 2025-01-04 15:40:54 )

    可以在线转化哦

  • 网友 索***宸: ( 2025-01-06 10:21:52 )

    书的质量很好。资源多

  • 网友 林***艳: ( 2025-01-03 08:47:31 )

    很好,能找到很多平常找不到的书。

  • 网友 利***巧: ( 2025-01-09 06:34:35 )

    差评。这个是收费的

  • 网友 孙***夏: ( 2025-01-08 03:36:38 )

    中评,比上不足比下有余

  • 网友 瞿***香: ( 2024-12-23 17:05:05 )

    非常好就是加载有点儿慢。

  • 网友 权***波: ( 2025-01-20 18:31:31 )

    收费就是好,还可以多种搜索,实在不行直接留言,24小时没发到你邮箱自动退款的!

  • 网友 家***丝: ( 2024-12-30 17:56:47 )

    好6666666

  • 网友 车***波: ( 2025-01-09 11:13:26 )

    很好,下载出来的内容没有乱码。

  • 网友 訾***晴: ( 2025-01-10 15:01:00 )

    挺好的,书籍丰富

  • 网友 融***华: ( 2025-01-03 15:46:00 )

    下载速度还可以

  • 网友 宫***凡: ( 2024-12-25 09:11:01 )

    一般般,只能说收费的比免费的强不少。

  • 网友 石***烟: ( 2025-01-13 06:38:24 )

    还可以吧,毕竟也是要成本的,付费应该的,更何况下载速度还挺快的

  • 网友 游***钰: ( 2024-12-24 21:35:20 )

    用了才知道好用,推荐!太好用了


随机推荐